高中數學基礎知識大全(高中數學的基本知識)
推薦文章
高中數學知識點大全
有的學生認為高中數學難做難做。其實高中數學整體上很簡單,很簡單,很多知識只要讀兩遍就可以了。下面是我整理的高中數學知識點大全,希望對你們有所幫助!
高中數學知識點
1、基本初等函數
指數、對數、冪函數三大函數的運算性質及圖像
函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關于這三大函數的運算公式,多記多用,多做一點練習,基本就沒問題。
函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對于冪函數還要搞清楚當指數冪大于一和小于一時圖像的不同及函數值的大小關系,這也是??键c。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。
2、函數的應用
這一章主要考是函數與方程的結合,其實就是函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關于證明零點的 方法 ,直接計算加得必有零點,連續(xù)函數在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函數的零點的Δ判別法,這個需要你看懂定義,多畫多做題。
3、空間幾何
三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。
在做題時結合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺體的表面積和體積,把公式記牢問題就不大。
4、點、直線、平面之間的位置關系
這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規(guī)范性問題。
關于這一章的內容,牢記直線與直線、面與面、直線與 面相 交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在于二面角這個概念,大多同學即使知道有這個概念,也無法理解怎么在二面里面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什么捷徑可走。
5、圓與方程
能熟練地把一般式方程轉化為標準方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方后定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。
6、三角函數
考試必在這一塊出題,且題量不小!誘導公式和基本三角函數圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恒等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。
7、平面向量
向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要“同起點的向量”這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。
8、三角恒等變換
這一章公式特別多,像差倍半角公式這類內容常會出現,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點,就是三角恒等變換是有一定規(guī)律的,記憶的時候可以集合三角函數去記。
9、解三角形
掌握正弦、余弦公式及其變式、推論、三角面積公式即可。
10、數列
等差、等比數列的通項公式、前n項及一些性質常出現于填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到后要帶有目的的去推導就沒問題了。
11、不等式
這一章一般用線性規(guī)劃的形式來考察學生,這種題通常是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規(guī)劃圖,然后再根據實際問題的限制要求來求最值。
高中數學公式大全
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b=-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1_X2=c/a 注:韋達定理
判別式
b2-4ac=0 注:方程有兩個相等的實根
b2-4ac0 注:方程有兩個不等的實根
b2-4ac0 注:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0
拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側面積 S=c_h 斜棱柱側面積 S=c'_h
正棱錐側面積 S=1/2c_h' 正棱臺側面積 S=1/2(c+c')h'
圓臺側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_r2
圓柱側面積 S=c_h=2pi_h 圓錐側面積 S=1/2_c_l=pi_r_l
弧長公式 l=a_r a是圓心角的弧度數r 0 扇形面積公式 s=1/2_l_r
錐體體積公式 V=1/3_S_H 圓錐體體積公式 V=1/3_pi_r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s_h 圓柱體 V=pi_r2h
高考前數學知識點 總結
選擇填空題
1、易錯點歸納:
九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。
針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。
2、答題方法:
選擇題十大速解方法:
排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;
填空題四大速解方法:直接法、特殊化法、數形結合法、等價轉化法。
解答題
專題一、三角變換與三角函數的性質問題
1、解題路線圖
①不同角化同角
②降冪擴角
③化f(x)=Asin(ωx+φ)+h
④結合性質求解。
2、構建答題模板
①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數”的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。
④ 反思 :反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規(guī)范性。
專題二、解三角形問題
1、解題路線圖
(1) ①化簡變形;②用余弦定理轉化為邊的關系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
2、構建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。
②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然后進行恒等變形。
專題三、數列的通項、求和問題
1、解題路線圖
①先求某一項,或者找到數列的關系式。
②求通項公式。
③求數列和通式。
2、構建答題模板
①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。
②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。
③定方法:根據數列表達式的結構特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規(guī)范寫出求和步驟。
⑤再反思:反思回顧,查看關鍵點、易錯點及解題規(guī)范。
專題四、利用空間向量求角問題
1、解題路線圖
①建立坐標系,并用坐標來表示向量。
②空間向量的坐標運算。
③用向量工具求空間的角和距離。
2、構建答題模板
①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。
②寫坐標:建立空間直角坐標系,寫出特征點坐標。
③求向量:求直線的方向向量或平面的'法向量。
④求夾角:計算向量的夾角。
⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。
專題五、圓錐曲線中的范圍問題
1、解題路線圖
①設方程。
②解系數。
③得結論。
2、構建答題模板
①提關系:從題設條件中提取不等關系式。
②找函數:用一個變量表示目標變量,代入不等關系式。
③得范圍:通過求解含目標變量的不等式,得所求參數的范圍。
④再回顧:注意目標變量的范圍所受題中其他因素的制約。
專題六、解析幾何中的探索性問題
1、解題路線圖
①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)
②將上面的假設代入已知條件求解。
③得出結論。
2、構建答題模板
①先假定:假設結論成立。
②再推理:以假設結論成立為條件,進行推理求解。
③下結論:若推出合理結果, 經驗 證成立則肯。 定假設;若推出矛盾則否定假設。
④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規(guī)范性。
專題七、離散型隨機變量的均值與方差
1、解題路線圖
(1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。
2、構建答題模板
①定元:根據已知條件確定離散型隨機變量的取值。
②定性:明確每個隨機變量取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變量取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據均值、方差公式求解其值。
專題八、函數的單調性、極值、最值問題
1、解題路線圖
(1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。
(2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區(qū)間和極值。
2、構建答題模板
①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)
②解方程:解f′(x)=0,得方程的根
③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區(qū)間,并列出表格。
④得結論:從表格觀察f(x)的單調性、極值、最值等。
⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規(guī)范性。
以上模板僅供參考,希望大家能針對自己的情況整理出來最適合的“套路”。
高中數學 學習心得
數學是一們基礎學科,我們從小就開始接觸到它?,F在我們已經步入高中,由于高中數學對知識的難度、深度、廣度要求更高,有一部分同學由于不適應這種變化,數學成績總是不如人意。甚至產生這樣的困惑:“我在初中時數學成績很好,可現在怎么了?”其實,學習是一個不斷接收新知識的過程。正是由于你在進入高中后 學習方法 或 學習態(tài)度 的影響,才會造成學得累死而成績不好的后果。那么,究竟該如何學好高中數學呢?以下我談談我的高中數學學習心得。
一、 認清學習的能力狀態(tài)。
1、 心理素質。我們在高中學習環(huán)境下取決于我們是否具有面對挫折、冷靜分析問題的辦法。當我們面對困難時不應產生畏懼感,面對失敗時不應灰心喪氣,而要勇于正視自己,及時作出總結教訓,改變學習方法。
2、 學習方式、習慣的反思與認識。(1) 學習的主動性。我們在進入高中以后,不能還像初中時那樣有很強的依賴心理,不訂 學習計劃 ,坐等上課,課前不預習,上課忙于記筆記而忽略了真正的聽課,顧此失彼,被動學習。(2) 學習的條理性。我們在每學習一課內容時,要學會將知識有條理地分為若干類,剖析概念的內涵外延,重點難點要突出。不要忙于記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結,而忙于套著題型趕作業(yè),對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3) 忽視基礎。在我身邊,常有些“自我感覺良好”的同學,忽視基礎知識、基本技能和基本方法,不能牢牢地抓住課本,而是偏重于對難題的攻解,好高騖遠,重“量”而輕“質”,陷入題海,往往在考試中不是演算錯誤就是中途“卡殼”。(4) 不良習慣。主要有對答案,卷面書寫不工整,格式不規(guī)范,不相信自己的結論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養(yǎng)成一種依賴于老師解說的心理,做作業(yè)不講究效率,學習效率不高。
二、 努力提高自己的學習能力。
1、 抓要點提高學習效率。(1) 抓教材處理。正所謂“萬變不離其中”。要知道,教材始終是我們學習的根本依據。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內容在教材中的地位,并將前后知識聯系起來,把握教材,才能掌握學習的主動性。(2) 抓問題暴露。對于那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3) 抓 思維訓練 。數學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養(yǎng)出來的。(5) 抓45分鐘課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄希望于課外去補,則會使學習效率大打折扣。
高中數學知識點大全相關 文章 :
★ 高二數學知識點總結
★ 高一數學必修一知識點匯總
★ 高中數學學習方法:知識點總結最全版
★ 高中數學知識點總結
★ 高一數學知識點總結歸納
★ 高三數學知識點考點總結大全
★ 高中數學基礎知識大全
★ 高三數學知識點梳理匯總
★ 高中數學必考知識點歸納整理
★ 高一數學知識點總結期末必備
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高中數學知識點最全總結
高考數學考試要取得好成績,一方面要有扎實的基本功、熟練的計算能力,同時還要有一定的答題技巧。下面是我給大家?guī)淼母咧袛祵W知識點最全 總結 ,以供大家參考!
數學重點知識點及答題技巧總結
一、高考數學必考題型 之 函數與導數
考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續(xù)、導數。
函數與導數單調性
若導數大于零,則單調遞增;若導數小于零,則單調遞減;導數等于零為函數駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。
若已知函數為遞增函數,則導數大于等于零;若已知函數為遞減函數,則導數小于等于零。
二、高考數學必考題型 之 幾何
公理1:如果一條直線上的兩點在一個平面內,那么這條直線上所有的點在此平面內
公理2:過不在同一條直線上的三點,有且只有一個平面
公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線
公理4:平行于同一條直線的兩條直線互相平行
定理:空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補
判定定理:
如果平面外一條直線與此平面內的一條直線平行,那么該直線與此平面平行 “線面平行”
如果一個平面內的兩條相交直線與另一個平面都平行,那么這兩個平面平行“面面平行”
如果一條直線與一個平面內的兩條相交直線都垂直,那么該直線與此平面垂直“線面垂直”
如果一個平面經過另一個平面的垂線,那么這兩個平面互相垂直“面面垂直”
三、高考數學必考題型 之 不等式
對稱性
傳遞性
加法單調性,即同向不等式可加性
乘法單調性
同向正值不等式可乘性
正值不等式可乘方
正值不等式可開方
倒數法則
四、高考數學必考題型 之 數列
(1)理解數列的概念,了解數列通項公式的意義了解遞推公式是給出數列的一種 方法 ,并能根據遞推公式寫出數列的前幾項。
(2)理解等差數列的概念,掌握等差數列的通項公式與前n項和公式,并能解決簡單的實際問題。
(3)理解等比數列的概念,掌握等比數列的通項公式與前n項和公式,井能解決簡單的實際問題。
必背公式
1、一元二次方程的解
-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數的關系x1+x2=-b/ax1x2=c/a注:韋達定理
判別式b2-4a=0注:方程有相等的兩實根
b2-4ac0注:方程有兩個不相等的個實根
b2-4ac0注:方程有共軛復數根
2、立體圖形及平面圖形的公式
圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0
拋物線標準方程y2=2pxy2=-2px2=2pyx2=-2py
直棱柱側面積S=cxh斜棱柱側面積S=c'xh
正棱錐側面積S=1/2cxh'正棱臺側面積S=1/2(c+c')h'
圓臺側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pixr2
圓柱側面積S=cxh=2pixh圓錐側面積S=1/2xcxl=pixrxl
弧長公式l=axra是圓心角的弧度數r0扇形面積公式s=1/2xlxr
錐體體積公式V=1/3xSxH圓錐體體積公式V=1/3xpixr2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側棱長
柱體體積公式V=sxh圓柱體V=pixr2h
3、圖形周長、面積、體積公式
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積
已知三角形底a,高h,則S=ah/2
已知三角形三邊a,b,c,半周長p,則S=√[p(p-a)(p-b)(p-c)](海倫公式)(p=(a+b+c)/2)
和:(a+b+c)x(a+b-c)x1/4
已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2
設三角形三邊分別為a、b、c,內切圓半徑為r
則三角形面積=(a+b+c)r/2
設三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
常用的三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
高考應試技巧
技巧一提前進入“角色”
考前晚上要睡足八個小時,早晨最好吃些清淡的早餐,帶齊一切高考用具,如筆、橡皮、作圖工具、身分證、準考證等。
提前半小時到達高考考區(qū),一方面可以消除新異刺激,穩(wěn)定情緒,從容進場,另一方面也留有時間提前進入“角色”讓大腦開始簡單的數學活動?;貞浺幌赂呖紨祵W常用公式,有助于高考數學超常發(fā)揮。
技巧二情緒要自控
最易導致高考心理緊張、焦慮和恐懼的是入場后與答卷前的“臨戰(zhàn)”階段,此間保持心態(tài)平衡的方法有三種
轉移注意法:把注意力轉移到對你感興趣的事情上或滑稽事情的回憶中。
自我安慰法:如“我經過的考試多了,沒什么了不起”等。
抑制思維法:閉目而坐,氣貫丹田,四肢放松,深呼吸,慢吐氣,如此進行到高考發(fā)卷時。
技巧三摸透“題情”
剛拿到高考數學試卷,不要匆匆作答,可先從頭到尾通覽全卷,通覽全卷是克服“前面難題做不出,后面易題沒時間做”的有效 措施 ,也從根本上防止了“漏做題”。
從高考數學卷面上獲取最多的信息,為實施正確的解題策略作準備,順利解答那些一眼看得出結論的簡單選擇或填空題,這樣可以使緊張的情緒立即穩(wěn)定,使高考數學能夠超常發(fā)揮。
技巧四信心要充足,暗示靠自己
高考數學答卷中,見到簡單題,要細心,莫忘乎所以,謹防“大意失荊州”。面對偏難的題,要耐心,不能急。
考試全程都要確定“人家會的我也會,人家不會的我也會”的必勝信念,使自己始終處于最佳競技狀態(tài)
技巧五數學答題有先有后
1、答題應先易后難,先做簡單的數學題,再做復雜的數學題;根據自己的實際情況,跳過實在沒有思路的高考數學題,從易到難。
2、先高分后低分,在高考數學考試的后半段時要特別注重時間,如兩道題都會做,先做高分題,后做低分題,對那些拿不下來的數學難題也就是高分題應“分段得分”,以增加在時間不足前提下的得到更多的分,這樣在高考中就會增加數學超常發(fā)揮的幾率。
高中數學知識點最全總結相關 文章 :
★ 高中數學知識點歸納最新
★ 高中數學基本知識點最新
★ 高一數學知識點全面總結
★ 高中數學知識點總結
★ 高中數學知識點:橢圓方程式知識點總結
★ 高一數學考試基礎知識點
★ 高中數學必修一三角函數知識點總結
★ 高中數學知識點:平面向量的公式的知識點總結
★ 高中數學全部知識點提綱整理
★ 人教版高中數學知識點總結最新
高中數學基礎知識大全
學過的知識與 方法 很可能被遺忘,要想牢固掌握,并形成能力,就必須科學而有效地進行復習,以期達到溫故知新的目的!接下來是我為大家整理的高中數學基礎 知識大全 ,希望大家喜歡!
高中數學基礎知識大全一
球的定義:
第一定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的旋轉體叫球體,簡稱球。
半圓的圓心叫做球的球心,半圓的半徑叫做球的半徑,半圓的直徑叫做球的直徑。
第二定義:球面是空間中與定點的距離等于定長的所有點的集合。
球:
以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的旋轉體叫做球體(solid sphere),簡稱球。
高中數學基礎知識大全二
專題一:集合
考點1:集合的基本運算
考點2:集合之間的關系
專題二:函數
考點3:函數及其表示
考點4:函數的基本性質
考點5:一次函數與二次函數.
考點6:指數與指數函數
考點7:對數與對數函數
考點8:冪函數
考點9:函數的圖像
考點10:函數的值域與最值
考點11:函數的應用
專題三:立體幾何初步
考點12:空間幾何體的結構、三視圖和直視圖
考點13:空間幾何體的表面積和體積
考點14:點、線、面的位置關系
考點15:直線、平面平行的性質與判定
考點16:直線、平面垂直的判定及其性質
考點17:空間中的角
考點18:空間向量
高中數學基礎知識大全三
1. 高中數學新增內容命題走向
新增內容:向量的基礎知識和應用、概率與統(tǒng)計的基礎知識和應用、初等函數的導數和應用。
命題走向:試卷盡量覆蓋新增內容;難度控制與中學教改的深化同步,逐步提高要求;注意體現新增內容在解題中的獨特功能。
(1)導數試題的三個層次
第一層次:導數的概念、求導的公式和求導的法則;
第二層次:導數的簡單應用,包括求函數的極值、單調區(qū)間,證明函數的增減性等;
第三層次:綜合考查,包括解決應用問題,將導數內容和傳統(tǒng)內容中有關不等式和函數的單調性等結合在一起。
(2)平面向量的考查要求
a.考查平面向量的性質和運算法則及基本運算技能。要求考生掌握平面向量的和、差、數乘和內積的運算法則,理解其直觀的幾何意義,并能正確地進行運算。
b.考查向量的坐標表示,向量的線性運算。
c.和其他數學內容結合在一起,如可和函數、曲線、數列等基礎知識結合,考查邏輯推理和運算能力等綜合運用數學知識解決問題的能力。題目對基礎知識和技能的考查一般由淺入深,入手不難,但要圓滿完成解答,則需要嚴密的邏輯推理和準確的計算。
(3)概率與統(tǒng)計部分
基本題型:等可能事件概率題型、互斥事件有一個發(fā)生的概率題型、相互獨立事件的概率題型、獨立重復試驗概率題型,以上四種與數字特征計算一起構成的綜合題。
復習建議:牢固掌握基本概念;正確分析隨機試驗;熟悉常見概率模型;正確計算隨機變量的數字特征。
2. 高中數學的知識主干
函數的基礎理論應用,不等式的求解、證明和綜合應用,數列的基礎知識和應用;三角函數和三角變換;直線與平面,平面與平面的位置關系;曲線方程的求解,直線、圓錐曲線的性質和位置關系。
3. 傳統(tǒng)主干知識的命題變化及基本走向
(1)函數、數列、不等式
a.函數考查的變化
函數中去掉了冪函數,指數方程、對數方程和不等式中去掉了“無理不等式的解法、指數不等式和對數不等式的解法”等內容,這類問題的命題熱度將變冷,但仍有可能以等式或不等式的形式出現。
b.不等式與遞歸數列的綜合題解決方法
化歸為等差或等比數列問題解決;借助教學歸納法解決;推出通項公式解決;直接利用遞推公式推斷數列性質。
c.函數、數列、不等式命題基本走向:創(chuàng)造新情境,運用新形式,考查基本概念及其性質;函數具有抽象化趨勢,即通過函數考查抽象能力;函數、數列、不等式的交匯與融合;利用導數研究函數性質,證明不等式;歸納法、數學歸納法的考查方式由主體轉向局部。
(2)三角函數
結合實際,利用少許的三角變換(尤其是余弦的倍角公式和特殊情形下公式的應用),考查三角函數性質的命題;與導數結合,考查三角函數性質及圖象;以三角形為載體,考查三角變換能力,及正弦定理、余弦定理靈活運用能力;與向量結合,考查靈活運用知識能力。
(3)立體幾何
由考查論證和計算為重點,轉向既考查空間觀念,又考查幾何論證和計算;由以公式、定理為載體,轉向對觀察、實驗、操作、設計等的適當關注;加大向量工具應用力度;改變設問方式。
(4)解析幾何
a.運算量減少,對推理和論證的要求提高。
b.考查范圍擴大,由求軌跡、討論曲線本身的性質擴大到考查:曲線與點、曲線與直線的關系,與曲線有關的直線的性質;運用曲線與方程的思想方法,研究直線、圓錐曲線之外的其他曲線;根據定義確定曲線的類型。
c.注重用代數的方法證明幾何問題,把代數、解析幾何、平面幾何結合起來。
d.向量、導數與解析幾何有機結合。
4. 關注試題創(chuàng)新
(1)知識內容出新:可能表現為高觀點題;避開 熱點 問題、返璞歸真。
a.高觀點題指與高等數學相聯系的問題,這樣的問題或以高等數學知識為背景,或體現高等數學中常用的數學思想方法和推理方法。高觀點題的起點高,但落點低,也就是所謂的“高題低做”,即試題的設計來源于高等數學,但解決的方法是中學所學的初等數學知識,所以并沒將高等數學引進高中教學的必要??忌槐伢@慌,只要坦然面對,較易突破。
b.避開熱點問題、返璞歸真:回顧近年來的試題,那些最有沖擊力的題,往往在我們的意料之外,而又在情理之中。
(2)試題形式創(chuàng)新:可能表現為:題目情景的創(chuàng)設、條件的呈現方式、設問的角度改變等題目的外在形式。
另請注意:研究性課題內容與高考(高考新聞,高考說吧)命題內容的關系、應用題的試題內容與試題形式。
(3)解題方法求新:指用新教材中的導數、向量方法解決舊問題。
5. 高考數學命題展望
主干內容重點考:基礎知識全面考,重點知識重點考,淡化特殊技巧。
新增知識加大考:考查力度及所占分數比例會超過課時比例,將新增知識與傳統(tǒng)知識綜合考是趨勢。
思想方法更深入:考查與數學知識聯系的基本方法、解決數學問題的科學方法。
突出思維能力考核:主要考查學生空間想象能力、學習能力、探究能力、應用能力和創(chuàng)新能力。
在知識重組上做 文章 :注意信息的重組及知識網絡的交叉點。
運算能力有所提高:淡化繁瑣、強調能力,提倡學生用簡潔方法得出結論。
空間想象能力平穩(wěn)過渡:形式不會大變,但將向量作為工具來解立體幾何是趨勢。
實踐應用能力進一步加強:從實際問題中產生的應用題是真正的應用題,而試題只是構建一種模式的是主干應用題。
考查創(chuàng)新學習能力:學生能選擇有效的方法和手段,要有自己的思路,創(chuàng)造性地解決問題。
個性品質得以彰顯。